МИНИСТЕРСТВО ОБРАЗОВАНИЯ ИРКУТСКОЙ ОБЛАСТИ ОБЛАСТНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ИРКУТСКИЙ ТЕХНИКУМ МАШИНОСТРОЕНИЯ ИМ. Н.П.ТРАПЕЗНИКОВА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ОП.04 ОСНОВЫ МАТЕРИАЛОВЕДЕНИЯ

для обучающихся по профессии

15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки))

Квалификация:

- сварщик ручной дуговой сварки плавящимся покрытым электродом;
- сварщик частично механизированной сварки плавлением
 Форма обучения: очная
 Срок получения СПО по профессии 2

года 10 мес. на базе основного общего образования

Профиль получаемого профессионального образования - технический

Рекомендовано к испол	с использованию цикловой комиссией			
Протокол №	OT «»	20 г.		
Председатель ЦК				

Составитель: Ченских Е.М., преподаватель общетехнических дисциплин ГБПОУ ИТМ

Методические рекомендации для выполнения самостоятельных работ являются частью основной профессиональной образовательной программы подготовки квалифицированных рабочих и служащих по профессии 15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки)).

Методические рекомендации включают в себя учебную цель, перечень образовательных результатов, заявленных в $\Phi \Gamma OC$, задачи, обеспеченность занятия, краткие теоретические и учебно-методические материалы по теме, вопросы для закрепления теоретического материала, задания для практической работы студентов и инструкцию по ее выполнению, порядок представления отчета о проделанной работе.

СОДЕРЖАНИЕ

1. ЦЕЛИ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ	стр. 4
2.СТРУКТУРА ДИСЦИПЛИНЫ	5
3. СТРУКТУРА ВНЕАУДИТОРНОЙ САМОСТОЯТЕЛЬНОЙ РАБОТЫ	6
4. РЕФЕРАТИВНАЯ РАБОТА	10
СПИСОК ЛИТЕРАТУРЫ	11

1. ЦЕЛИ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ

Требования к результатам освоения дисциплины:

В результате освоения учебной дисциплины обучающийся должен уметь:

- выполнять механические испытания образцов материалов;
- использовать физико-химические методы исследования металлов;
- пользоваться справочными таблицами для определения свойств материалов;
- выбирать материалы для осуществления профессиональной деятельности.

В результате освоения учебной дисциплины обучающийся должен знать:

- основные свойства и классификацию материалов, использующихся в профессиональной деятельности;
- наименование, маркировку, свойства обрабатываемого материала;
- правила применения охлаждающих и смазывающих материалов;
- основные сведения о металлах и сплавах;
- основные сведения о неметаллических, прокладочных, уплотнительных и электротехнических материалов, стали, их классификацию.

.

2.СТРУКТУРА ДИСЦИПЛИНЫ

Дисциплина «Основы материаловедения» состоит из двух разделов. При изучении дисциплины предусмотрены следующие формы занятий: лекции, практические занятия, самостоятельная работа и написание реферативных работ (таб.1).

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	48
Обязательная аудиторная учебная нагрузка (всего)	32
в том числе:	
Практические занятия	14
Самостоятельная работа обучающегося (всего), в том числе:	16
Систематическая проработка конспектов занятий, учебной,	6
дополнительной и справочной литературы при подготовке к занятиям;	
Подготовка к практическим работам с использованием методических	10
рекомендаций преподавателя, оформление практических работ, отчетов	
и подготовка к их защите;	
Подготовка к контрольным работам;	
Подготовка и защита рефератов по данным темам	
Итоговая аттестация в форме дифференцированного зачета	

3. СТРУКТУРА ВНЕАУДИТОРНОЙ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Раздел 1. Основные сведения о металлах. Строение и свойства металлов.

1. Кристаллическое строение металлов и сплавов

Металлы как кристаллические тела. Основные типы кристаллических решеток, характерных для металлов. Изотропия и анизотропия кристалла и поликристалла, их роль в формировании свойств заготовки, детали, конструкции. Дефекты кристалла, их роль в формировании свойств. Роль дислокаций в пластической деформации. В упрочнении.

Полиморфизм, его роль в формировании свойств металлов и сплавов. Полиморфизм железа, критические точки. Термические кривые нагрева и охлаждения железа. Кристаллические решетки а - железа, g - железа: ОЦК – объемно-центрированная кубическая и ГЦК - гранецентрированная кубическая, соответственно, их способность растворять углерод. Роль полиморфизма в термообработке и формировании свойств сплавов.

Задание:

Изучить тему и составить конспект, ответив в тетради на вопросы:

- 1. Дать определение. Кристаллическое тело, аморфное тело. Привести примеры.
- 2. Чем отличается кристаллическое тело от аморфного.
- 3. Какие типы кристаллических решеток характерны для металлов.
- 4. Что такое изотропия и анизотропия свойств.
- 5. Дефекты в кристаллах.

2. Свойства материалов и методы их испытаний

Требования к конструкционным материалам, обеспечивающие надежность

конструкции. Металлы и сплавы как конструкционные материалы. Композиты.

Механические свойства : прочность, пластичность, вязкость, твердость.

Критерии прочности, пластичности, вязкости. Связь твердости с прочностью. Удельная прочность. Определение прочности, пластичности, вязкости, твердости. Диаграмма разрыва, информация, получаемая из нее. Работа разрушения. Влияние конструктивных (надрезы) и внешних (температура, скорость нагружения) факторов на вид диаграммы разрыва и на поведение материала в конструкции.

Разрушение. Виды разрушения: вязкое, хрупкое, смешанное, усталостное. Хладноломкость. Определение ударной вязкости, порога хрупкости, запаса вязкости. Оценка разрушения по виду излома. Масштабный фактор, его роль в формировании свойств детали, конструкции.

Задание:

Изучить тему и составить конспект, ответив в тетради на вопросы:

- 1. Дать определения механическим свойствам металла, единицы измерения
- 2. Перечислить виды деформаций и сделать рисунки
- 3. Что такое твердость. Какие методы определения твердости вам известны
- 4. Какой из методов можно рекомендовать для определения твердости: а)мягкой стали, б)закаленной детали, в)тонкого твердого слоя на шейке вала, г)на поверхности массивной конструкции, д)элементов микроструктуры.

3.Виды термической обработки

Основные виды термообработки, их назначение и применение.

Отжиг, его разновидности: гомогенизация, рекристаллизация, снятие внутренних напряжений, измельчение зерна, сфероидизация цементита. Режимы отжига. Определение температуры отжига по диаграмме состояния «Железо – цементит». Нормализация. Особенности отжига и нормализации доэвтектоидных, эвтектоидных и заэвтектоидных сталей.

Закалка. Диаграмма изотермического превращения переохлажденного аустенита. Продукты распада аустенита в зависимости от величины переохлаждения (скорости охлаждения): перлит, сорбит, троостит, бейнит, мартенсит, их свойства. Мартенситное превращение. Критическая скорость охлаждения. Влияние углерода на критическую скорость охлаждения. Выбор режимов закалки (температуры нагрева, скорости охлаждения) для доэвтектоидных, эвтектоидных и заэвтектоидных сталей. Способы закалки.

Отпуск. Назначение и разновидности отпуска: низкий, средний, высокий. Структурные превращения при отпуске, свойства продуктов отпуска.

Задание:

Изучить тему и составить конспект, ответив в тетради на вопросы:

- 1. Какие виды термообработки вам известны и каково их назначение.
- 2. Что такое отжиг. Какие виды отжига вам известны и каково их назначение.
- 3. Назначение отжигов.
- 4. Дать определение закалки. Закалочные среды, применение. Виды закалок.
- 5. В чем принципиальное отличие отжигов и закалки.
- 6. Что собой представляет «отпуск» и какие виды отпуска вам известны.
- 7. Нормализация. Режимы, назначение.

4.Влияние режимов термообработки на структуру и свойства стали

Режимы отжига. Определение температуры отжига по диаграмме состояния «Железо – цементит».

Нормализация. Особенности отжига и нормализации доэвтектоидных, эвтектоидных и заэвтектоидных сталей.

Закалка. Диаграмма изотермического превращения переохлажденного аустенита. Продукты распада аустенита в зависимости от величины переохлаждения (скорости охлаждения): перлит, сорбит, троостит, бейнит, мартенсит, их свойства. Мартенситное превращение. Критическая скорость охлаждения.

Влияние углерода на критическую скорость охлаждения. Выбор режимов закалки (температуры нагрева, скорости охлаждения) для доэвтектоидных, эвтектоидных и заэвтектоидных сталей. Способы закалки.

Задание:

Изучить тему и составить конспект, ответив в тетради на вопросы:

- 1. За счет чего достигается эффект термической обработки по влиянию ее на механические свойства.
- 2. Как выполняется отжиг для измельчения зерна. На чем он основан. Нанесите на диаграмму «железо цементит» температуры отжига для сталей разного структурного класса
- 3. Определите по диаграмме состояния «железо цементит» температуры отжигов для разных сталей (доэвтектоидных, эвтектоидных и заэвтектоидных): а) гомогенизирующего, б) рекристаллизационного, в) для снятия внутренних напряжений. 6.. В чем различие между полным и неполном отжигом. 7. Что такое «нормализация». В чем ее отличие от отжига.
- 4. Какие превращения происходят в переохлажденном аустените в зависимости от степени переохлаждения. Приведите диаграмму изотермического распада аустенита, покажите на ней продукты диффузионного распада и их свойства.
- 5. Какие охлаждающие среды обеспечивают критическую скорость охлаждения углеродистых сталей.
- 6. Какая охлаждающая среда применяется при закалке углеродистых сталей и почему.
- 7. Как выполняется закалка ТВЧ (токами высокой частоты), на чем основывается нагрев и где он концентрируется. Каковы достоинства и недостатки закалки ТВЧ.

5. Цветные металлы и сплавы

Промышленное значение цветных металлов. Наиболее массовыми металлами являются медь, цинк, свинец, олово, алюминий, никель, магний, титан.

Получение меди. Получение алюминия. Получение титана. Получение магния.

Задание:

Изучить тему и составить конспект, ответив в тетради на вопросы:

- 1. Свойство цветных металлов.
- 2. Методы производства цветных металлов.
- 3. Руда, которая содержит медь.
- 4. В чем разница между гидрометаллургическим и пирометаллургическим способом получения меди.
- 5. Описать операции, которые происходят при пирометаллургическом способе получения меди
- 6. Описать производство алюминия, этапы.
- 7. Описать производство титана.
- 8. Описать производство магния.

4. РЕФЕРАТИВНАЯ РАБОТА

Цели и задачи реферативной работы

Целью реферативной работы является более углубленное изучение материала.

При выполнении реферативной работы следует ориентироваться на применение наиболее перспективных и экономичных технологических процессов, современных материалов, прогрессивных форм организации работ. Каждому студенту необходимо выполнить 1 реферат, темы рефератов студент выбирает самостоятельно.

Структура реферативной работы

Реферативная работа состоит из следующих разделов

- титульный лист;
- содержание;
- введение;
- специальная часть реферата;
- литература.

Объем реферата должен составлять не менее 5 печатных листов А4.

Тематика рефератов для самостоятельной работы

- 1. Тенденции и перспективы развития материаловедения
- 2. Тенденции развития металлических металлов
- 3. Влияние легирования на качество железоуглеродистых сплавов
- 4. Композиционные материалы
- 5. Производства чугуна
- 6. Производство стали
- 7. Производство цветных металлов
- 8. Новейшие материалы, применяемые в сварочном производстве
- 9. Термообработка. Применение.
- 10. Дефекты термической обработки

5. СПИСОК ЛИТЕРАТУРЫ

Основные источники:

- 1. В.С.Власов. Металловедение— М:Альфа Инфра-М, 2009 год
- 2. А.М.Адамаскин, В.М. Зуев. Металловедение— М:Форум 2010 год

Дополнительные источники:

- 1. Солнцев Ю.П., Вологжанина С.А. Материаловедение. М: Издательский центр «Академия», 2007 год.
- 2. Чумаченко Ю.Т. Материаловедение и слесарное дело. Ростов н/Дону: феникс, 2005 год.
- 3. Козлов Ю. С. Материаловедение. Рекомендуется в качестве учебного пособия для технических специальностей средних специальных учебных заведений-М.: издательство «Агар»-1999.-180 с.
- 4. Соломенцев Ю.М., Материаловедение. М: Высшая школа, 2005 год.