МИНИСТЕРСТВО ОБРАЗОВАНИЯ ИРКУТСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИРКУТСКОЙ ОБЛАСТИ «ИРКУТСКИЙ ТЕХНИКУМ МАШИНОСТРОЕНИЯ ИМ. Н.П.ТРАПЕЗНИКОВА»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине ОУД.04. Математика

для обучающихся техникума, осваивающих программы подготовки квалифицированных рабочих и служащих 15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки)), 23.01.03 Автомеханик, 43.01.02 Парикмахер, 09.01.01 Наладчик аппаратного и программного обеспечения, 08.01.14 Монтажник санитарно-технических, вентиляционных систем

и оборудования

PACCMOTPEH

на заседании ЦК преподавателей естественнонаучного цикла, математики и ИКТ Протокол № 8 от 13 мая 2019 г.

Фонд оценочных средств составлен в соответствии с рабочей программой учебной дисциплины ОУД.04. Математика, разработанной на основе примерной программы учебной дисциплины ОУД.04. Математика для профессий среднего профессионального образования и специальности среднего профессионального образования, разработанной департаментом государственной политики и нормативно-правового регулирования в сфере образования Минобрнауки России (одобрена Федеральным институтом развития образования 21 июля 2015г.).

Паспорт фонда оценочных средств

Учебная дисциплина: «Математика»

Требования ФГОС СПО к результатам освоения дисциплины: общие компетенции:

В результате освоения дисциплины обучающийся должен знать/понимать:

- - значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- - значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
- - универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
- - вероятностный характер различных процессов окружающего мира. В результате освоения дисциплины обучающийся должен **уметь**:
- выполнять арифметические действия над числами, сочетая устные и письменные приемы; находить приближенные значения величин и погрешности вычислений (абсолютная и относительная); сравнивать числовые выражения;
- находить значения корня, степени, логарифма, тригонометрических выражений на основе определения, используя при необходимости инструментальные средства; пользоваться приближенной оценкой при практических расчетах;
- выполнять преобразования выражений, применяя формулы, связанные со свойствами степеней, логарифмов, тригонометрических функций;
- вычислять значение функции по заданному значению аргумента при различных способах задания функции;
- определять основные свойства числовых функций, иллюстрировать их на графиках;
- строить графики изученных функций, иллюстрировать по графику свойства элементарных функций;
- использовать понятие функции для описания и анализа зависимостей величин;
- решать рациональные, показательные, логарифмические, тригонометрические уравнения, сводящиеся к линейным и квадратным, а также аналогичные неравенства и системы;
 - использовать графический метод решения уравнений и неравенств;
- изображать на координатной плоскости решения уравнений, неравенств и систем с двумя неизвестными;
- составлять и решать уравнения и неравенства, связывающие неизвестные величины в текстовых (в том числе прикладных) задачах.
 - находить производные элементарных функций;

- использовать производную для изучения свойств функций и построения графиков;
- применять производную для проведения приближенных вычислений, решать задачи прикладного характера на нахождение наибольшего и наименьшего значения;
- вычислять в простейших случаях площади и объемы с использованием определенного интеграла;
- решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
- вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;
- изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
 - строить простейшие сечения куба, призмы, пирамиды;
- решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
- использовать при решении стереометрических задач планиметрические факты и методы;
 - проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

- для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства.
- для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.
 - для построения и исследования простейших математических моделей.
- решения прикладных задач, в том числе: социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.
- для анализа реальных числовых данных, представленных в виде диаграмм, графиков;
 - для анализа информации статистического характера.
- для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

Форма аттестации: экзамен

1 Общие положения

Фонд оценочных средств (ФОС) предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины Математика.

ФОС включает контрольные материалы для проведения текущего контроля и промежуточной аттестации в форме экзамена.

рабочей программы учебной дисциплины «Математика».

2. Результаты освоения дисциплины, подлежащие проверке

Результаты обучения

(освоенные умения, усвоенные знания)

Умения

величин и погрешности вычислений (абсолютная и относительная); сравнивать числовые выражения;

находить значения корня, степени, логарифма, тригонометрических выражений;

выполнять преобразования выражений, применяя формулы, связанные со свойствами степеней, логарифмов, тригонометрических функций

вычислять значение функции по заданному значению аргумента при различных способах задания функции;

определять основные свойства числовых функций, иллюстрировать их на графиках;

строить графики изученных функций, иллюстрировать по графику свойства элементарных функций;

решать рациональные, показательные, логарифмические, тригонометрические уравнения, сводящиеся к линейным и квадратным, а также аналогичные неравенства и системы

находить производные элементарных функций;

использовать производную для изучения свойств функций и построения графиков;

применять производную для решения задач прикладного характера, на нахождение наибольшего и наименьшего значения;

находить неопределённый интеграл;

вычислять в простейших случаях площади и объемы с использованием определенного интеграла.

решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;

вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;

распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

описывать взаимное расположение прямых и плоскостей в пространстве,

анализировать в простейших случаях взаимное расположение объектов в пространстве;

изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач; строить простейшие сечения куба, призмы, пирамиды;

решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

Знания

основные сведения о числах и действиях над ними, приближенные значения величин и погрешности вычислений (абсолютная и относительная); понятия корня, степени, логарифма, тригонометрических выражений;

понятие функции, различные способы задания функции; построение графиков изученных функций, иллюстрация по графику свойств элементарных функций;

основные методы решения рациональных, показательных, логарифмических тригонометрических уравнений, а также аналогичных неравенств и систем;

основные понятие и методы математического анализа

основные понятия теории вероятности и математической статистики

основные понятие и методы стереометрии

6. Структура контрольного задания

6.1 Входной контроль.

Вариант 1.

1. Сократите дробь
$$\frac{4x^2 - x}{6x}$$
.

- Решите неравенство 5x 7 ≥ 7x 5.
 Решите уравнение x² 10x + 25 = 0.
 Сравните 56,78 · 10⁶ и 5,687 · 10⁷.
- 5. Решите систему уравнений: $\begin{cases} 5x + y = -2; \\ 7x y = -10. \end{cases}$
- 6. Постройте график функции y = 7x 5 и найдите, при каких значениях x значения y не меньше - 40.
- 7. В арифметической прогрессии второй член равен 9, а разность равна 20. Найдите десятый член этой прогрессии и сумму первых десяти ее членов.
- 8. Моторная лодка прошла против течения реки 8 км и вернулась обратно, затратив на обратный путь на 30 мин меньше, чем при движении против течения. Найдите скорость лодки в неподвижной воде, если скорость течения равна 4 км/ч.
- 9. Сократите дробь $\frac{17 + 2\sqrt{30}}{\sqrt{15} + \sqrt{2}}$.
- 10. Решите неравенство $\frac{(+4)^2}{(+2)^2} \le 0$

- 1. Сократите дробь $\frac{x^2 + 2x}{7x}$.
- 2. Решите неравенство $3x 8 \ge 8x 3$.
- 3. Решите уравнение $x^2 14x + 49 = 0$. 4. Сравните $4,567 \cdot 10^9$ и $45,76 \cdot 10^8$.
- 5. Решите систему уравнений: $\begin{cases} 3x + y = 13; \\ 4x y = 15. \end{cases}$
- 6. Постройте график функции y = 6x 7 и найдите, при каких значениях x значения y не больше - 49.
- 7. В арифметической прогрессии второй член равен 11, а разность равна 30. Найдите десятый член этой прогрессии и сумму первых десяти ее членов.
- 8. Моторная лодка прошла против течения реки 21 км и вернулась обратно, затратив на обратный путь на 20 мин меньше, чем при движении против течения. Найдите скорость лодки в неподвижной воде, если скорость течения равна 2 км/ч.
- 9. Сократите дробь $\frac{16+2\sqrt{39}}{\sqrt{13}+\sqrt{3}}$.
- 10. Решите неравенство $\frac{(+7)^2}{(-36)^2} \le 0$

Вариант 3.

- 1. Сократите дробь $\frac{2x^3 x^2}{4x^2}$.
- 2. Решите неравенство $5x 7 \le 7x 5$. 3. Решите уравнение $x^2 10x + 25 = 0$. 4. Сравните $26,78 \cdot 10^5$ и $2,687 \cdot 10^6$.
- 5. Решите систему уравнений: $\begin{cases} 5x + y = -2; \\ 7x y = -10. \end{cases}$
- 6. Постройте график функции y = 6x 4 и найдите, при каких значениях x значения y не меньше - 39.
- 7. В арифметической прогрессии второй член равен 9, а разность равна 20. Найдите 11-ый член этой прогрессии и сумму первых 11 - ти ее членов.
- 8. Моторная лодка прошла против течения реки 6 км и вернулась обратно, затратив на обратный путь на 30 мин меньше, чем при движении против течения. Найдите скорость лодки в неподвижной воде, если скорость течения равна 4 км/ч.
- 9. Сократите дробь $\frac{17 + 2\sqrt{30}}{\sqrt{15} + \sqrt{2}}$.
- 10. Решите неравенство $\frac{(+4)^3}{r^2-9} \le 0$

- 1. Сократите дробь $\frac{6x^2+x}{2x}$.
- 2. Решите неравенство $3x 8 \le 8x 3$. 3. Решите уравнение $x^2 14x + 49 = 0$. 4. Сравните 7,267 · 10^6 и 72,76 · 10^5 .
- 5. Решите систему уравнений: $\begin{cases} 3x + y = 13; \\ 4x y = 15. \end{cases}$
- 6. Постройте график функции y = 5x 6 и найдите, при каких значениях x значения y не больше - 48.
- 7. В арифметической прогрессии второй член равен 11, а разность равна 30. Найдите 11ый член этой прогрессии и сумму первых 11 - ти ее членов.
- 8. Моторная лодка прошла против течения реки 20 км и вернулась обратно, затратив на обратный путь на 20 мин меньше, чем при движении против течения. Найдите скорость лодки в неподвижной воде, если скорость течения равна 2 км/ч.
- 9. Сократите дробь $\frac{16 + 2\sqrt{39}}{\sqrt{13} + \sqrt{3}}$.
- 10. Решите неравенство $\frac{(+7)^3}{x^2-36} \le 0$

Критерии оценки:

Оценка «5» ставится за выполнение 9 – 10 заданий

Оценка «4» ставится за выполнение 7 – 8 заданий

Оценка «3» ставится за выполнение 5 – 6 заданий

Оценка «2» ставится за выполнение менее 5 заданий

Тема Числовые множества

Самостоятельная работа

- 1. Выполнить действия $\frac{14,8-6\frac{11}{12}+12,75-7\frac{2}{15}}{10\frac{2}{3}:3\frac{11}{12}}+2\frac{2}{3}\cdot3,75$
- 2. Решить пропорцию $11\frac{1}{3}:1\frac{8}{9}=5\frac{1}{2}x:\frac{5}{9}$
- 3. Представьте число в виде десятичной дроби и результат округлите до сотых. Найдите абсолютную и относительную погрешности.

Время выполнения: 30 минут

Критерии оценки: «5» правильно решены все задания

«4» правильно выполнено задание №1, 2

«3» правильно выполнено задание №1 или №2 и 3.

7

Математический диктант

- 1. Упростить выражение i^{27} .
- 2. Выполнить умножение в алгебраической форме (3-i)(2i+5).

- 3. Разложить на множители $25 + b^2$.
- 4. Выполнить деление (2-i):(-3+i).
- 5. Возвести в степень $(1-i)^2$.
- 6. Выполнить действия $(2-i)^2 + i^{27}$.

Время выполнения: 30 минут

Критерии оценки: «5» правильно выполнены все задания

«4» правильно выполнено 5 заданий

«3» правильно выполнено 3-4 задания.

«2» выполнено менее трех заданий.

Тема Многочлены

Самостоятельная работа

Упростите выражения

1.
$$\left(\frac{2x}{2x+y} - \frac{4x^2}{4x^2 + 4xy + y^2}\right) : \left(\frac{2x}{4x-y^2} + \frac{1}{y-2x}\right);$$

2.
$$\left(\frac{x}{x^2-25} + \frac{5}{5-x} + \frac{1}{x+5}\right) : \left(x-5 + \frac{28-x^2}{x+5}\right);$$

3.
$$\left(\frac{3}{x-4} + \frac{4x-6}{x^2-3x-4} + \frac{2x}{x+1}\right) \cdot \frac{x}{2x-3}$$
.

Время выполнения: 30 минут

Критерии оценки: «5» правильно решены все задания

«4» правильно решены 2 задания

«3» правильно выполнено 1 задание.

Тема Уравнения. Системы уравнений

Самостоятельная работа

Решить системы уравнений:

1.
$$\begin{cases} 4x + y - z = -1, \\ x + 2y - 3z = -11, ; \\ 3x + y + 2z = 4. \end{cases}$$

2.
$$\begin{cases} 4x - 4y + 3z = 16, \\ 3x - y + 5z = 8, \\ 2x - 7y + 3z = 18. \end{cases}$$
3.
$$\begin{cases} y - 3x = 1, \\ x^2 - 2xy + y^2 = 9. \end{cases}$$

3.
$$\begin{cases} y - 3x = 1, \\ x^2 - 2xy + y^2 = 9. \end{cases}$$

Время выполнения: 25 минут

Критерии оценки: «5» правильно решены все задания

«4» правильно решены задания №1 и 2

«3» правильно решены задания №1 и 2, или №2 и 3.

Тема Неравенства. Системы неравенств.

Контрольная работа

1. Решить системы уравнений: A)
$$\begin{cases} 3x - 2y + z = 10, \\ x + 5y - 2z = -15, ; \\ 2x - 2y - z = 3. \end{cases}$$

$$\text{E) } \begin{cases} \frac{3x - 5y}{3} - \frac{x + 2y}{6} = 10, \\ 7x - 10y = 62. \end{cases}$$

B)
$$\begin{cases} y - 3x = 1, \\ x^2 - 2xy + y^2 = 9. \end{cases}$$
 Решите неравенства и систему неравенств:

A)
$$-4x^2 + 20x - 25 < 0$$
;

$$\frac{x-1}{x+5} \le 4$$
;

B)
$$|5x-12| \ge 3$$
;

$$\Gamma) \begin{cases} \frac{7x-5}{2} > 4x + \frac{2x-3}{2}, \\ \frac{7x-2}{3} - 5 > 2x - \frac{x-2}{4}. \end{cases}$$
 Время выполнения: 90 минут

Критерии оценки: «5» правильно решены все задания; «4» правильно решено не менее 5 заданий; «3» правильно решено не мене 3 заданий.

Тема Степень числа Самостоятельная работа

- 1. Освободитесь от иррациональности в знаменателе дроби $\frac{1}{\sqrt{5} + \sqrt{3}}$.
- 2. Вычислите $\left(\frac{1}{4}\right)^{-\frac{1}{2}} \cdot 25^{\frac{1}{2}} 81^{\frac{1}{2}} \cdot 125^{-\frac{1}{3}}$.
- 3. Упростите выражение:

A)
$$\sqrt{x} \cdot x^{\frac{1}{2}}$$
;

Б)
$$\left(a^{0,4}\right)^{\frac{1}{2}} \cdot a^{0,8}$$
;

B)
$$\frac{x^{-\frac{2}{3}} \cdot x^{\frac{5}{3}}}{x^{\frac{3}{5}}}$$
;

$$\Gamma) \frac{a^{\frac{3}{2}} - b^{\frac{3}{2}}}{a^{\frac{1}{2}} + b^{\frac{1}{2}}} \cdot \frac{a - b}{a + a^{\frac{1}{2}} b^{\frac{1}{2}} + b} + 2a^{\frac{1}{2}} b^{\frac{1}{2}}.$$

Время выполнения: 25 минут

Критерии оценки: «5» правильно решены все задания;

«4» правильно решено не менее 4 заданий;

«З» правильно решено не мене 3 заданий.

Тема Корень натуральной степени из числа

Самостоятельная работа

1. Решите уравнения

A)
$$\sqrt{2x^2-3x+1} = \sqrt{x^2-3x+2}$$
;

Б)
$$3x+1=\sqrt{1-x}$$
;

B)
$$\sqrt{x+3} - \sqrt{3x-3} = 10$$
.

2. Решите неравенства:

A)
$$\sqrt{x-1} < 3$$
;

Б)
$$\sqrt{3x-x^2} < 4-x$$

3. Решите систему уравнений (дополнительно):

$$\begin{cases} \sqrt{2x - 3y + 2} = 3, \\ \sqrt{3x + 2y - 5} = 2. \end{cases}$$

Время выполнения: 30 минут

Дополнительное задание оценивается отдельно.

Критерии оценки: «5» правильно решены все задания

«4» правильно решены 2 уравнения и 1 неравенство

«3» правильно решены 1 уравнение и неравенство.

Тема Показательные и логарифмические уравнения и неравенства

Проверочная работа

Решить уравнения:

A)
$$5^{x+1} - 3 \cdot 5^{x-2} = 12$$
;

$$5) 9^{x} - 2 \cdot 3^{x} = 63;$$

B)
$$\frac{1}{8} \cdot 2^{x-1} = 4^{-1,25+x}$$
.

Время выполнения: 15 минут

Критерии оценки: «5» правильно решены все задания;

«4» правильно решено 2 задания;

«3» правильно решено не мене 1 задания.

Самостоятельная работа

Решите неравенства

A)
$$3^{x+2} + 3^{x-1} < 28$$
;

Б)
$$7^{2x} - 6 \cdot 7^x + 7 \le 0$$
;

B)
$$2^{x^2-7x+12} > 1$$
 .Время выполнения: 15 минут

Критерии оценки: «5» правильно решены все задания

«4» правильно решены 2 задания

«3» правильно решено не мене 1 задания.

Проверочная работа

1. Вычислить:

A)
$$\log_2 2^4$$
;

$$_{\rm E}$$
 $7^{2\log_7 4}$;

B)
$$\log_2 4 \cdot \log_3 27$$
;

$$\Gamma$$
 $\frac{1}{2}\log_7 36 - \log_7 14 - 3\log_7 \sqrt[3]{4}$

2. Решить уравнение: $\log_6 12 + \log_6 x = \log_6 24$.

Время выполнения: 15 минут

Критерии оценки: «5» правильно решены все задачи;

«4» правильно решено не менее 4 задач;

«3» правильно решено не мене 3 задач.

Самостоятельная работа

Решить уравнения:

A)
$$\log_{\frac{1}{2}}(x^2-4x-1)=-2$$
;

$$\log_7(4x-6) = \log_7(2x-4)$$
;

B)
$$1g^2 x + 51g x + 9 = 0$$
.

Время выполнения: 15 минут

Критерии оценки: «5» правильно выполнены 3 уравнения;

«4» правильно выполнено 2 уравнения;

«3» правильно выполнено не менее 1 уравнения.

Контрольная работа

1. Решить уравнения:

A)
$$2^{2x} - 6 \cdot 2^x = 0$$
;

Б)
$$5 \cdot 4^y + 4^{y+2} = 336$$
;

B)
$$\log_{\frac{1}{7}}(x^2+x-5)=-1$$
;

$$\Gamma$$
) $4\lg^2 x + 2\lg x = 6$.

2. Решите неравенства

A)
$$2^x + 2^{x+2} \le 20$$
;

Б)
$$3^{2x} - 4 \cdot 3^x + 3 \le 0$$
;

B)
$$\lg(2x-1)+\lg(2x-3)>\lg(3x-3)$$
;

$$\Gamma$$
) $2\log_5^2 x + 5\log_5 x + 2 \ge 0$.

3. Решить систему уравнений
$$\begin{cases} \log_4 x - \log_4 y = 1 \\ x - 3y = 16 \end{cases}$$
.

Время выполнения: 90 минут

Критерии оценки: «5» правильно решены все задания

«4» правильно решены 3 уравнения, 3 неравенства и система «З» правильно решены по 2 различных уравнения и неравенст-

ва(логарифмическое и показательное).

Тригонометрия

Тема Основные понятия. Тригонометрические функции.

Диктант

1. Выразить в радианах $120^{\circ};75^{\circ};135^{\circ};100^{\circ};300^{\circ}$

2. Выразить в градусах
$$\frac{5\pi}{3}$$
; $\frac{7\pi}{6}$; $\frac{2\pi}{9}$; $\frac{9\pi}{4}$; $\frac{\pi}{12}$

Критерии оценки: «5» правильно выполнены все задания;

«4» правильно выполнено 8 заданий (по 4 из каждого);

«3» правильно выполнено 5-6 заданий.

Тема Основные тригонометрические формулы и следствия из них.

Самостоятельная работа

1. Вычислить:

A)
$$Cos60^{0}$$
;

B)
$$Cos(-750^{\circ})$$
.

(b)
$$2Cos30^{\circ} \cdot Ctg60^{\circ} - Sin\frac{3\pi}{2}$$
;

2. Упростить:

A)
$$Sin^2\alpha + Cos^2\alpha + tg^2\alpha$$
;

$$5) \frac{1}{Sin^2\alpha} - Ctg^2\alpha - Cos^2\alpha;$$

$$\Gamma) \frac{Sin(-\alpha) + Cos(\pi + \alpha)}{1 + 2Cos(\frac{\pi}{2} - \alpha)Cos\alpha}$$

B)
$$1-(Sin\alpha-Cos\alpha)^2$$
;

3. Дано
$$Sin\alpha = \frac{5}{13}$$
, $\frac{\pi}{2} < \alpha < \pi$. Найти $Sin2\alpha$, $Cos2\alpha$, $tg2\alpha$.

Время выполнения 30 минут

Критерии оценки: «5» правильно выполнены все задания;

«4» правильно выполнено: №1(все), №2(2 задачи), №3;

«3» правильно выполнено 5-6 заданий.

Тема Обратные тригонометрические функции.

Диктант

Найдите:

- 1. ArcSin(-1);
- 2. ArcCos1;

3.
$$Arctg\left(-\frac{\sqrt{3}}{3}\right)$$
;

- 4. $ArcCtg(-\sqrt{3});$
- 5. $ArcSin\frac{\sqrt{3}}{2}$;
- 6. $ArcCos\left(-\frac{1}{2}\right)$;
- 7. *Arctg*1;

8.
$$ArcCtg \frac{\sqrt{3}}{3}$$
;

9.
$$Sin\left(ArcSin\frac{\sqrt{3}}{2}\right)$$
;

10.
$$tg\left(ArcCos\frac{\sqrt{3}}{2}\right)$$
.

Критерии оценки: «5» правильно выполнены все задания;

«4» правильно выполнено 8 заданий;

«3» правильно выполнено 5-7 заданий.

Тема Тригонометрические уравнения и неравенства.

Самостоятельная работа

Решить уравнения:

A)
$$2(\cos^2 x - \sin^2 x) = 1$$
;

$$\mathbf{E}) 9Sinx \cdot Cosx - 7Cos^2x - 2Sin^2x = 0$$

B)
$$Sin^2x - 3Cosx - 3 = 0$$
;

$$\Gamma$$
) $4Sinx+Sin2x=0$. Время выполнения 25 минут

Критерии оценки: «5» правильно выполнены все задания;

«4» правильно выполнено 3 задания;

«3» правильно выполнено 2 задания.

Контрольная работа

1. Вычислите:

A)
$$tg\left(ArcSin\frac{\sqrt{3}}{2} + 2ArcCos\frac{\sqrt{2}}{2}\right)$$
;

Б)
$$Cos2\alpha$$
, если $Cos\alpha = \frac{4}{5}$, $\frac{3\pi}{2} < \alpha < 2\pi$.

2. Решить уравнения:

A)
$$2tgx + tg^2x - 1 = 0$$
:

$$\mathbf{E}$$
) $5Sin^2x + 6Cosx - 6 = 0$

B)
$$3Cos2x - Sin^2x + 5Sinx \cdot Cosx = 0$$
;

$$\Gamma$$
 $Cos(6+3x) = -\frac{\sqrt{2}}{2}$. Решить неравенства:

A)
$$tg3x > -\sqrt{3}$$
;

$$\text{B) } Cos\left(x-\frac{\pi}{6}\right) \leq \frac{\sqrt{3}}{2}.$$

3. Доказать тождества:

A)
$$(Sin\alpha + Cos\alpha)^2 = 1 + Sin2\alpha$$
;

$$\text{E)} \ \frac{Sin(\pi-\alpha)}{tg(\pi+\alpha)} \cdot \frac{Ctg\left(\frac{\pi}{2}-\alpha\right)}{tg\left(\frac{\pi}{2}+\alpha\right)} \cdot \frac{Cos(2\pi-\alpha)}{Sin(-\alpha)} = Sin\alpha \ .$$

Время выполнения 90 минут

Критерии оценки: «5» правильно выполнены все задания;

«4» правильно выполнены задания №1-3;

«3» правильно выполнены задания №1-2.

Дифференциальное исчисление функций одной переменной Тема Предел функции.

Самостоятельная работа

Найти пределы:

1.
$$\lim_{x\to 2} (2x^3 - 3x^2 + 6)$$
;

2.
$$\lim_{x\to 5} (4x^2 + 19x - 5)$$
;

3.
$$\lim_{x \to 0} \frac{x^4 + 3x^2}{x^3 + 2x^2};$$

4.
$$\lim_{x\to 2} \frac{x^2-4}{x^2-6x+8}$$
;

5.
$$\lim_{x \to \infty} \frac{3x^4 + x^2 + x}{x^4 + 3x - 2};$$

6.
$$\lim_{x \to \infty} \frac{4x^3 + 7x}{2x^3 - 4x^2 + 5};$$

7.
$$\lim_{x \to -2} \frac{2+x}{\sqrt{x+3}-1}$$
;

8.
$$\lim_{x\to 5} \frac{\sqrt{x-1}-2}{x-5}$$
;

9.
$$\lim_{x\to 0} \frac{Sin15x}{5x}.$$

Время выполнения 20 минут

Критерии оценки: «5» правильно выполнены все задания;

«4» правильно выполнено 6-7 заданий;

«3» правильно выполнено 4-5 заданий.

Тема Производная функции.

Тестирование

- 1. Приращение функции $f(x) = 3x^2 1$ в точке $x_0 = 1$, при $\Delta x = 0.1$,
- A) 0,63
- Б) 0,60
- B) 0.59

- Γ) -0,57
- 2. Производная функции $y = \frac{1}{5}x^5 + 2$ равна
- A) $x^6 + 2$ B) $x^4 + 2$ B) x^4

- Γ) x^6
- 3. Производная функции $f(x) = \frac{1}{5}x^{10} + 1$ в точке x = 1 равна
- A) 1,2
- Б) 2
- B) -1,2

- Γ) 2,5
- 4. Какая из приведенных функций является производной функции $f(x) = -5x^5 + 2$
- A) x^4 B) $-25x^4+2$ B) $-25x^4$
- Γ) $-25x^6$

Время выполнения 15 минут

Критерии оценки: «5» правильно выполнены все задания;

«4» правильно выполнено 3 задания;

«3» правильно выполнено 2 задания.

Самостоятельная работа

Найти производную функции

1.
$$h(x) = Sinx + x^2$$
;

2.
$$f(x) = 2^x + e^x$$
:

3.
$$g(x) = (x^3 + 3)(x^6 - 1)$$
;

4.
$$\varphi(x) = \frac{x^3}{2x+4}$$
;

5.
$$h(x) = x \cdot tgx$$
;

6.
$$f(x) = Cos(5x-9)$$
;

7.
$$g(x) = (7-24x)^9$$
;

8.
$$w(x) = x^2 + 2x - 1$$
; Время выполнения 20 минут

Критерии оценки: «5» правильно выполнены все задания;

«4» правильно выполнено 6-7 заданий;

Самостоятельная работа

- 1. Составьте уравнение касательной к графику функции $f(x) = x 3x^2$ в точке с абсциссой $x_0 = 2x_0$.
- 2. Составить уравнение касательной к графику функции $h(x) = x + e^{2x}$, параллельно прямой y = -x.
- 3. Составить уравнение касательной к графику функции $g(x) = 2x^2 + 2x 3$, проходящей через заданную точку A(2;9).

Время выполнения 25 минут

Критерии оценки: «5» правильно выполнены все задания;

«4» правильно выполнено 2 задания;

«3» правильно выполнено 1 задание.

Тема Исследование функции с помощью производной.

Самостоятельная работа

Найти наибольшее и наименьшее значения функции на промежутке

1.
$$f(x) = x^3 - 9x^2 + 24x - 1$$
 на отрезке $[-1;3]$.

2.
$$h(x) = x^3 + 3x^2 - 45x - 2$$
 Ha отрезке [1;2].

Время выполнения 15 минут

Критерии оценки:

«5» правильно выполнены все задания;

«4» правильно выполнено 1 задание и часть второго;

«3» правильно выполнено 1 задание.

Контрольная работа

1. Найти производную

A)
$$f(x) = (x^2 - 2)(\sqrt{x^2 + 1});$$

B) $h(x) = x^3 + e^x - Cos3x$

- 2. Написать уравнение касательной к графику функции $f(x) = 9x 4x^3$ в точке с абсциссой $x_0 = 1$.
- 3. Найти промежутки монотонности, точки экстремума, экстремумы функции

A)
$$f(x) = -\frac{1}{3}x^3 + \frac{1}{2}x^2 + 1$$
;

Б)
$$h(x) = (x-1)^2(2x+4)$$
.

- 4. Найти наибольшее и наименьшее значения функции $f(x) = x^3 3x^2 + 4x$ на отрезке [-2;2].
- 5. Исследуйте функцию $f(x) = x^3 3x^2 + 4$ и постройте ее график.

Время выполнения 90 минут

Критерии оценки:

«5» правильно выполнены все задания;

«4» правильно выполнено 4 задания;

«3» правильно выполнено 3 задания.

Интегральное исчисление функций одной переменной

Тема Неопределенный интеграл.

Математический диктант

2

1.
$$\int \frac{dx}{x}$$

2.
$$\int Cosx \cdot dx$$

3.
$$\int \frac{dx}{Cos^2x}$$

4.
$$\int dx$$

5.
$$\int x^n dx$$

6.
$$\int \frac{dx}{\sin^2 x}$$

7.
$$\int a^x dx$$

8.
$$\int Sinx \cdot dx$$

9.
$$\int e^x dx$$

A. tgx + C

$$-Ctgx + C$$

B.
$$e^x + C$$

$$\Gamma$$
. $\ln |x| + C$

$$_{\text{Д.}}$$
 $-Cosx+C$

E.
$$\frac{a^x}{\ln a} + C$$

ж.
$$Sinx+C$$

$$3. \quad \frac{x^{n+1}}{n+1} + C$$

$$\mathbf{H}$$
. $x+C$

Самостоятельная работа

Найти интеграл

1.
$$\int 5(x^3-2x^2+7)dx$$

2.
$$\int \frac{3(3x-1)^2}{x} dx$$

$$3. \int \left(\frac{2}{\cos^2 x} - \frac{3}{\sin^2 x}\right) dx$$

4.
$$\int (3e^x + 5Cosx)dx$$

$$5. \int \frac{3}{\sqrt[4]{3x+5}} dx$$

 $6. \int \frac{dx}{\sin^2(3x+2)}$

$$\int x^3 \cdot e^{x^4} dx$$

Время выполнения 20 минут

Критерии оценки:

«5» правильно выполнены все задания;

«4» правильно выполнено 5-6 заданий;

«3» правильно выполнено 3-4 задания.

Тема Определенный интеграл.

Самостоятельная работа Вычислите интеграл

1.
$$\int_{0}^{2} (5x^{2} + 6) dx$$

2.
$$\int_{1}^{2} \frac{1+2x^2}{x} dx$$

$$3. \int_{0}^{8} \left(3\sqrt{x} - 4\sqrt[3]{x}\right) dx$$

$$4. \int_{0}^{\frac{2\pi}{3}} Cos \frac{x}{4} dx$$

$$5. \int_{0}^{\frac{\pi}{2}} \frac{Sinx}{\sqrt{Cosx}} dx$$

$$6. \int_{0}^{\frac{1}{2}} e^{-2x} dx$$

7.
$$\int\limits_{0}^{\frac{\pi}{3}}e^{Cosx}Sinxdx$$
Время выполнения 25 минут

Критерии оценки:

«5» правильно выполнены все задания;

«4» правильно выполнено 5-6 заданий;

«3» правильно выполнено 3-4 задания.

Контрольная работа

1. Найдите интегралы

A)
$$\int \frac{x^3 + 6x^2 + 12x + 8}{x} dx$$
;

Б)
$$\int \frac{4x^3 dx}{(2-x^4)^5}$$
 .Вычислите интегралы

A)
$$\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{x dx}{3 + 4x^2}$$
;

A)
$$\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{xdx}{3+4x^2}$$
;

Б) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{Cosxdx}{Sin^3x}$. Найдите площадь фигуры, ограниченной линиями

A)
$$y = x^2 + 2x - 3$$
 µ $y = 0$;

Б)
$$y = x^2 - 4x + 3$$
 и $y = -x^2 + 6x - 5$.

Время выполнения 90 минут

Критерии оценки:

«5» верно выполнены все задания;

«4» верно выполнены 1,2 задания и одно из 3 задания;

«3» верно выполнено по одному из каждого задания.

Геометрия

Тема Планиметрия.

Самостоятельная работа

Вариант 1

- 1. Решите треугольник, если даны две его стороны и угол, заключенный между этими сторонами. a = 10, b = 12, $C = 24^{\circ}$
- 2. Стороны параллелограмма 17,50м и 10,20м, угол между ними $36^{0}13'$. Найти площадь параллелограмма.
- 3. Основание прямоугольника равно 50,1м. Диагональ образует с основанием угол $18^{0}35'$. Найдите периметр прямоугольника.
- 4. Вычислить площадь прямоугольной трапеции с острым углом $D = 40^{\circ}24'$ и высотой, в два раза большей меньшего основания. Меньшее основание равно 12,35м.
- 5. В окружность вписан четырехугольник ABCD. Найдите угол ACD, если углы BADи ADB равны соответственно 56° и 78^{0} .
- 6. Постройте окружность, описанную около данного треугольника.
- 7. Даны три точкиА, В, С. Постройте точку Х, которая одинаково удалена от точек Аи В и находится на данном расстоянии от точки С.

Вариант 2

- 1. Решите треугольник, если даны две его стороны и угол, заключенный между сторонами. a = 2,29, c = 1,7, $B = 39^{\circ}20'$
- 2. Стороны параллелограмма равны 23,50м и 12,20м, угол между ними $63^{0}23'$. Найти площадь параллелограмма.
- 3. Основание прямоугольника равно 12м. Диагональ образует с основанием угол 30°. Найдите периметр прямоугольника.
- 4. В равнобедренной трапеции боковая сторона равна большему основанию. Найти площадь трапеции, если большее основание равно 13,85дм и острый угол при основании равен 72°16′.
- 5.В окружность вписан четырехугольник FMNK. Найдите угол FNK, если углы MFKи FKM равны соответственно 26⁰ и 69^{0} .
- 6. Постройте окружность, вписанную в данный треугольник.
- 7. Даны три точкиА, В, С. Постройте точку Х, которая одинаково удалена от точек Аи В и находится на данном расстоянии от точки С.

Время выполнения 45 минут

Критерии оценки: «5» верно выполнены все задания;

«4» верно выполнены 5-6 задания;

«3» верно выполнены 3-4 задания.

Тема Объемы и площади поверхностей геометрических тел.

Контрольная работа

- 1. Боковое ребро правильной четырехугольной пирамиды, равные 12см, образуют с плоскостью основания угол 60^{0} . Найдите боковую поверхность пирамиды.
- 2. Развертка боковой поверхности цилиндра является квадратом, диагональ которого равна 10см. Найдите боковую поверхность цилиндра.
- 3. В правильной треугольной призме сторона основания равна 20см, боковая поверхность равновелика сумме оснований. Найдите объем призмы.
- 4. Образующая конуса равна 6см, а угол при вершине осевого сечения равен 60° . Найдите объем конуса.

Время выполнения 90 минут

Критерии оценки: «5» верно выполнены все задания;

«4» верно выполнены 3 задания;

«3» верно выполнены 2 задания (1, 4 или 2, 3).

Тема Векторы в пространстве.

Самостоятельная работа

1. Даны векторы
$$\vec{a} = 2\vec{i} + 3\vec{j} + \vec{k}$$
 и $\vec{b} = 4\vec{i} - 2\vec{k}$. Вычислить $\vec{a} \cdot \vec{b}$.

2. Вычислите угол между векторами
$$\overrightarrow{AB}$$
 и \overrightarrow{CD} , если $A(\sqrt{3};1;0)$,

$$B(0;0;2\sqrt{3}), C(0;2;0), D(\sqrt{3};1;2\sqrt{3}).$$

Время выполнения 90 минут

Критерии оценки: «5» верно выполнены все задания;

«4» верно выполнены 3 задания;

«3» верно выполнены 2 задания (1,4 или 2,3).

Семестровая контрольная работа за первый курс первый семестр

Вариант 1

1) Решите систему уравнений:

$$\begin{cases} \frac{2x-1}{5} + \frac{3y-2}{4} = 2, \\ \frac{3x+1}{5} = \frac{3y+2}{4}. \end{cases}$$

Вариант 2

1) Решите систему уравнений:

$$\begin{cases} y+2-\frac{4y-3x}{2} = x - \frac{2y-5}{5}, \\ x+2-\frac{5x+3y}{7} = y - \frac{9y+11}{14}. \end{cases}$$

2) Решите уравнение:

a)
$$x + 1 = \sqrt{1 - x}$$

$$6) 16^x - 17 \cdot 4^x + 16 = 0$$

$$B^*$$
) $2^{x^2-1} - 3^{x^2} = 3^{x^2-1} - 2^{x^2+2}$

3) Решите неравенство:

a)
$$\log_{\frac{1}{3}}(x-1) - \log_{\frac{1}{3}}(x+2) > \log_{\frac{1}{3}}(2x)$$

б)
$$|3x - 9|$$
 ≥ 6

4) Известно, что $Cos\alpha = 0.6$ и

 $0 < \alpha < \frac{\pi}{2}$. Найдите значения других тригонометрических функций угла α .

2) Решите уравнение:

a)
$$x = 1 + \sqrt{x + 11}$$

$$6) 64^x - 8^x - 56 = 0$$

$$B^*$$
) $7 \cdot 3^{x+1} - 5^{x+2} = 3^{x+4} - 5^{x+3}$

3) Решите неравенство:

a)
$$\log_{\frac{1}{2}}(x+8) - \log_{\frac{1}{2}}(x-3) > \log_{\frac{1}{2}}(3x)$$

б)
$$|4 - 2x| < 16$$

4) Известно, что $Sin\alpha = 0.8$ и

 $0 < \alpha < \frac{\pi}{2}$. Найдите значения других тригонометрических функций угла α .

Вариант 3

1) Решите систему уравнений:
$$\begin{cases} \frac{2x+y}{5} = \frac{3x-5y}{2} + 3, \\ \frac{x}{2} + \frac{y}{3} = 8 - \frac{x-2y}{5}. \end{cases}$$

2) Решите уравнение:

a)
$$\sqrt{x-1} = x - 3$$

$$6) 9^x - 4 \cdot 3^x + 3 = 0$$

$$B^*$$
) $3^{x+3} - 7^{x+1} = 5 \cdot 7^x - 3^x$

3) Решите неравенство: a)
$$log_{\frac{1}{2}}(3y-1) - log_{\frac{1}{2}}(3-y) < 0$$

б)
$$|5x + 10|$$
 ≤ 15

4) Известно, что $Sin\alpha = \frac{2}{2}\mu \frac{\pi}{2} < \alpha < \pi$.

Найдите значения других тригонометрических функций угла α .

Вариант 4

1) Решите систему уравнений:
$$\begin{cases} \frac{8x}{15} - \frac{3y - 10}{5} = \frac{2(x - y)}{3} + \frac{8}{5}, \\ \frac{5x}{6} - \frac{y - 17}{12} = \frac{y}{8} + \frac{3x + 4}{4}. \end{cases}$$

2) Решите уравнение:

a)
$$\sqrt{x^2 - x - 3} = 3$$

$$6) \ 4^x - 12 \cdot 2^x + 32 = 0$$

6)
$$4^{x} - 12 \cdot 2^{x} + 32 = 0$$

 8^{x}) $5^{x^{2}} - 3^{x^{2}+1} = 2 \cdot 5^{x^{2}-1} - 2 \cdot 3^{x^{2}-2}$

3) Решите неравенство:

a)
$$log_{0,2}(16x^2 + 8) < log_{0,2}(x^2 + 1)$$

б)
$$|9 + 3x| > 12$$

4) Известно, что $Cos\alpha = -\frac{3}{4}$ и

$$\frac{\pi}{2} < \alpha < \pi$$

Найдите значения других тригонометрических функций угла α .

Время выполнения 90 минут

Критерии оценки: «5» верно выполнены все задания;

«4» верно выполнены 1,2 задания и одно из 3 задания;

«3» верно выполнено по одному из каждого задания.

Итоговые (семестровые) контрольные работы

На выполнение каждой контрольной работы дается 90 минут.

Критерии оценки выполненых работ следующие:

«5»-Работа должна быть выполнена правильно и в полном объёме , 90-100% выполнения.

«4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%.

«3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.

Семестровая контрольная работа за первый семестр

Вариант 1

5) Решите систему уравнений:

$$\begin{cases} \frac{2x-1}{5} + \frac{3y-2}{4} = 2, \\ \frac{3x+1}{5} = \frac{3y+2}{4}. \end{cases}$$

6) Решите уравнение:

a)
$$x + 1 = \sqrt{1 - x}$$

$$6) 16^{x} - 17 \cdot 4^{x} + 16 = 0$$

$$B^*$$
) $2^{x^2-1} - 3^{x^2} = 3^{x^2-1} - 2^{x^2+2}$

7) Решите неравенство:

a)
$$\log_{\frac{1}{3}}(x-1) - \log_{\frac{1}{3}}(x+2) > \log_{\frac{1}{3}}(2x)$$

б)
$$|3x - 9| ≥ 6$$

8) Известно, что $Cos\alpha = 0.6$ и

 $0<lpha<rac{\pi}{2}$. Найдите значения других три-

гонометрических функций угла α .

Вариант 3

5) Решите систему уравнений:

$$\begin{cases} \frac{2x+y}{5} = \frac{3x-5y}{2} + 3, \\ \frac{x}{2} + \frac{y}{3} = 8 - \frac{x-2y}{5}. \end{cases}$$

6) Решите уравнение:

a)
$$\sqrt{x-1} = x-3$$

Вариант 2

5) Решите систему уравнений:

$$\begin{cases} y+2-\frac{4y-3x}{2} = x - \frac{2y-5}{5}, \\ x+2-\frac{5x+3y}{7} = y - \frac{9y+11}{14}. \end{cases}$$

6) Решите уравнение:

a)
$$x = 1 + \sqrt{x + 11}$$

$$6) 64^x - 8^x - 56 = 0$$

$$B^*) 7 \cdot 3^{x+1} - 5^{x+2} = 3^{x+4} - 5^{x+3}$$

7) Решите неравенство:

a)
$$log_{\frac{1}{2}}(x+8) - log_{\frac{1}{2}}(x-3) > log_{\frac{1}{2}}(3x)$$

б)
$$|4 - 2x| < 16$$

8) Известно, что $Sin\alpha = 0.8$ и

 $0 < \alpha < \frac{\pi}{2}$. Найдите значения других тригонометрических функций угла α .

Вариант 4

5) Решите систему уравнений:

$$\begin{cases} \frac{8x}{15} - \frac{3y - 10}{5} = \frac{2(x - y)}{3} + \frac{8}{5}, \\ \frac{5x}{6} - \frac{y - 17}{12} = \frac{y}{8} + \frac{3x + 4}{4}. \end{cases}$$

6) Решите уравнение:

$$a)\sqrt{x^2-x-3}=3$$

$$6) 9^x - 4 \cdot 3^x + 3 = 0$$

$$B^*$$
) $3^{x+3} - 7^{x+1} = 5 \cdot 7^x - 3^x$

7) Решите неравенство:

a)
$$log_{\frac{1}{2}}(3y-1) - log_{\frac{1}{2}}(3-y) < 0$$

б)
$$|5x + 10| ≤ 15$$

8) Известно, что $Sin\alpha = \frac{2}{3} \frac{\pi}{2} < \alpha < \pi$. Найдите значения других тригонометрических функций угла α .

$$6) 4^x - 12 \cdot 2^x + 32 = 0$$

$$B^*) 5^{x^2} - 3^{x^2+1} = 2 \cdot 5^{x^2-1} - 2 \cdot 3^{x^2-2}$$

7) Решите неравенство:

a)
$$log_{0,2}(16x^2 + 8) < log_{0,2}(x^2 + 1)$$

б)
$$|9 + 3x| > 12$$

8) Известно, что $Cos\alpha = -\frac{3}{4}$ и

 $\frac{\pi}{2} < \alpha < \pi$. Найдите значения других тригонометрических функций угла α .

Семестровая контрольная работа за второй семестр

Вариант 1

1. Вычислите предел функции:

a.
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{x - 2}$$

6.
$$\lim_{x \to \infty} \frac{x^6 - x + 1}{2 + 3x^5 - x^6}$$

2. Найдите производную:

a.
$$f(x) = 7x^5 - 6x^3 + 3x - 45$$

6.
$$g(x) = (2x^2 - 8x + 5) \cdot (x^3 + 3x - 9)$$

B.
$$h(x) = \frac{x^2 + 2}{x^3 - 9}$$

$$q(x) = (x^2 - 5x + 8)^6$$

- 3. Исследуйте на монотонность и экстремумы функцию $f(x) = 2x^3 9x^2 + 12x 8$.
- 4. Вычислите интегралы:

a.
$$\int_{1}^{2} (x^{3} + 1) dx$$

6. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2Cosx - 3Sinx) dx$

- 5. Вычислите площадь фигуры, ограниченной кривыми y = 2x + 7 и x = 0, x = 1, y = 0.
- 6. Радиус основания конуса равен 12 см, а образующая наклонена к плоскости основания под углом 30^{0} . Найдите объем конуса.
- 7. Площадь диагонального сечения правильной четырехугольной призмы $10\sqrt{2}$ см, ее высо-

Вариант 2

1. Вычислите предел функции:

a.
$$\lim_{x \to -1} \frac{2x^2 + x - 1}{x + 1}$$

6.
$$\lim_{z \to \infty} \frac{6 - z - z^2}{6z^2 - z - 1}$$

2. Найдите производную:

a.
$$f(x) = 5x^4 - 8x^3 + 3x - 12$$

6.
$$g(x) = (2x^2 - x + 8) \cdot (x^3 + 4x - 9)$$

B.
$$h(x) = \frac{x^3 - 3}{x^2 + 1}$$

$$q(x) = \sqrt{(2x-1)^3}$$

- 3. Исследуйте на монотонность и экстремумы функцию $f(x) = 2x^3 15x^2 + 36x 270$.
- 4. Вычислите интегралы:

a.
$$\int_{-1}^{2} (x^2 + 2x + 1) dx$$

6. $\int_{-1}^{\frac{\pi}{2}} Sinx dx$

- 5. Вычислите площадь фигуры, ограниченной кривыми y = 4x 6 и x = 0, x = 1, y = 0.
- 6. Стороны оснований правильной усеченной четырехугольной пирамиды равны 8 см и 4 см, боковое ребро 4 см.

та 2 см. Найдите поверхность призмы. 8. Найдите угол между векторами \overrightarrow{AB} и \overrightarrow{CD} , если $A(\sqrt{3};1;0),B(0;0;2\sqrt{2})$ $C(0;2;0),D(\sqrt{3};1;2\sqrt{2})$.

Найдите объем пирамиды..

- 7. Осевое сечение цилиндра прямоугольник сос сторонами 10 см и 24 см. Найдите поверхность цилиндра.
- 8. Найдите угол между векторами \overrightarrow{AB} и \overrightarrow{CD} , если A(6;-4;8), B(8;-2;4) C(12;-6;4) , D(14;-6;2) .

7. Вопросы

Первый семестр:

- 1. Действительные числа. Вычисление погрешностей.
- 2. Делимость целых чисел. Признаки делимости.
- 3. Комплексные числа. Алгебраическая и геометрическая формы комплексного числа. Арифметические действия над комплексными числами.
- 4. Формулы сокращенного умножения.
- 5. Уравнения: линейные, квадратные, с модулем, рациональные. Методы решения уравнений.
- 6. Системы уравнений. Методы решения систем уравнений.
- 7. Неравенства: линейные, квадратные, с модулем. Методы решения неравенств.
- 8. Решение систем неравенств с одной переменной. Совокупность неравенств.
- 9. Определение степени. Свойства степеней.
- 10. Определение корняп-ой степени. Свойства корней.
- 11. Степенная функция, ее свойства и график.
- 12. Иррациональные уравнения и неравенства.
- 13. Показательная функция, ее свойства и график.
- 14. Показательные уравнения и неравенства. Методы решения показательных уравнений и неравенств.
- 15. Определение логарифма. Основные логарифмические тождества.
- 16. Логарифмическая функция, ее свойства и график.
- 17. Логарифмические уравнения и неравенства. Методы решения логарифмических уравнений и неравенств.

Второй семестр:

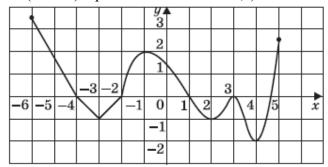
- 1. Тригонометрические функции, их свойства и графики.
- 2. Преобразование графиков функций.
- 3. Основные тригонометрические тождества.
- 4. Формулы приведения.
- 5. Предел функции. Теоремы о пределах. Вычисление пределов функций. Пример.
- 6. Раскрытие неопределенностей при вычислении пределов. Пример.
- 7. Понятие производной функции. Геометрический и физический смысл производной.
- 8. Производная функции. Общее правило нахождения производной. Производная суммы, произведения, частного. Пример.

- 9. Производная степенной, показательной, логарифмической и тригонометрических функций. Пример.
- 10. Производная сложной функции. Пример.
- 11. Вторая производная и ее физический смысл.
- 12. Промежутки монотонности и точки экстремума функции.
- 13. Наибольшее и наименьшее значение функции. Пример.
- 14. Оптимизационные задачи. Пример.
- 15. Исследование функции при помощи производной.
- 16. Неопределенный интеграл и его свойства. Метод непосредственного интегрирования.
- 17. Методы интегрирования неопределенного интеграла. Примеры.
- 18. Определенный интеграл и его свойства. Метод непосредственного интегрирования.
- 19. Методы интегрирования определенного интеграла. Пример.
- 20. Площадь криволинейной трапеции.
- 21. Аксиомы стереометрии и следствия из них.
- 22. Взаимное расположение прямых в пространстве. Параллельность прямых в пространстве.
- 23. Взаимное расположение прямой и плоскости в пространстве. Параллельность прямой и плоскости.
- 24. Взаимное расположение плоскостей в пространстве. Параллельность двух плоскостей.
- 25. Перпендикуляр и наклонная. Теорема о трех перпендикулярах.
- 26. Угол между прямой и плоскостью. Перпендикулярность прямой и плоскости.
- 27. Угол между плоскостями. Перпендикулярность двух плоскостей.
- 28. Понятие многогранника. Призма. Правильная призма.
- 29. Параллелепипед и его свойства.
- 30. Пирамида. Усеченная пирамида. Свойства параллельных сечений в пирамиде.
- 31. Понятие многогранника. Правильные многогранники.
- 32. Тела вращения. Цилиндр. Сечения цилиндра плоскостью.
- 33. Тела вращения. Конус. Сечения конуса плоскостью.
- 34. Сфера и шар. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере.
- 35. Площадь поверхности и объем призмы и цилиндра.
- 36. Площадь поверхности и объем пирамиды и конуса.
- 37. Площадь поверхности и объем сферы, шара и его частей.
- 38. Понятие вектора. Действия над векторами в векторной и координатной формах. Расстояние между двумя точками.
- 39. Скалярное произведение векторов. Угол между векторами.

Экзаменационная работа по математике Вариант 1

Критерии оценки выполнения работы

Оценка	Число баллов, необходимых для полу-	
	чения оценки	
«3» удовлетворительно	8-14	
«4» хорошо	15-20	
	(не менее одного задания из дополни-	
	тельной части)	
«5» отлично	21-30	
	(не менее двух заданий из дополни-	
	тельной части)	


Обязательная часть

При выполнении заданий 1-8 запишите ход решения и полученный ответ

- 1. (1 балл) Средняя семья платит за квартиру 6 тыс. рублей в месяц. Это составляет 15% того, во что обходится содержание жилья государству. Сколько доплачивает государство?
- 2. (1 балл) Для того что бы связать свитер хозяйке нужно 600 граммов шерсти красного цвета. Можно купить пряжу по цене 60 рублей за 50 грамм, а можно купить неокрашенную пряжу по цене 50 рублей за 50 грамм и окрасить ее. Один пакетик краски стоит 30 рублей и он рассчитан на 300 грамм пряжи. Какой вариант покупки дешевле? В ответе напишите, сколько рублей будет стоить эта покупка.
- 3. (1 балл) Высота конуса равен 45 см, а длина образующей 75 см. Найдите диаметр основания конуса.
- 4. (1 балл) Вычислите значение выражения $9^{1.5}$ $81^{0.5}$ – $(0.5)^{-2}$
- 5. Найдите значение $\cos x$, если $\sin x = -15/17$; $\Pi < x < 3\Pi/2$
- 6. (1 балл) Решите уравнение $(1/6)^{x+1}=36^{x-1}$
- 7. (1 балл) Вычислите значение выражения $Log_{1/2}16 \cdot Log_51/25 : 9^{log}_{3}^{2}$
- 8. (1 балл) Решите уравнение $Log_{0.5}(3x-1)=-4$
- 9. (1 балл) Садовник посадил весной 580 семян цветов, из которых 52 не взойдут. Какова вероятность того, что цветочное семечко взойдет?

Используя график функции f(x) (см. рис. ниже), определите и запишите ответ:

- 10. (1 балл) Наименьшее и наибольшее значение функции.
- 11. (1 балл) Промежутки возрастания и убывания функции.
- 12. (1 балл) При каких значениях $f(x) \ge 0$

При выполнении заданий 13-18 запишите ход решения и полученный ответ.

- 13. (1 балл) Объем куба равен 32 см³. Найдите площадь его поверхности.
- 14. (1 балл) Тело движется по прямой так, что расстояние S до него от некоторой точки A этой прямой изменяется по закону $S(t)=t^3-3t+4$ (м), где t-время движения в секундах. Найдите скорость тела через три секунды после начала движения.
- 15. (1 балл) Найдите область определения функции $y=lg(x^2-8x)$
- 16. (1 балл) Решите уравнение $\sqrt{2x-3} = 3$
- 17. (1 балл) Решите уравнение $2\cos x + \sqrt{2} = 0$
- 18. (1 балл) В правильной четырехугольной усеченной пирамиде ребро нижнего основания 4 см, ребро верхнего и боковое ребро по 2 см. Найдите площадь боковой поверхности усеченной пирамиды.

Дополнительная часть

При выполнении заданий 19-22 запишите ход решения и полученный ответ.

- 19. (3 балла) Найдите промежутки убывания функции $y=-x^3+9x^2+21x$
- 20. (3 балла) Равнобедренная трапеция с основаниями 12см и 18 см и высотой 4 см вращается около большего основания. Найдите объем тела вращения.
- 21. (3 балла) Решите систему уравнений $27^x = 9^y$ $81^x = 3^{y+1}$
- 22. (3 балла) Найдите решение уравнения: $6\sin^2 x + \sin x \cdot \cos x \cos^2 x = 0$

Составил преподаватель Карташев И.А.

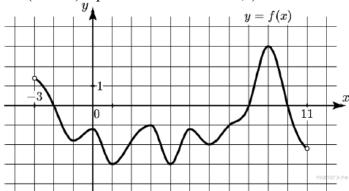
Экзаменационная работа по математике Вариант 2

Критерии оценки выполнения работы

Оценка	Число баллов, необходимых для полу-	
	чения оценки	
«3» удовлетворительно	8-14	
«4» хорошо	15-20	
	(не менее одного задания из дополни-	
	тельной части)	
«5» отлично	21-30	
	(не менее двух заданий из дополни-	
	тельной части)	

Обязательная часть

При выполнении заданий 1-8 запишите ход решения и полученный ответ


- 1. (1 балл) Тетрадь стоит 40 рублей. Определите, какое наибольшее число тетрадей можно будет купить на 750 рублей после понижения цены на 10%.
- 2. (1 балл) Для остекления музейных витрин требуется заказать 40 одинаковых стекол в одной из трех фирм. Площадь каждого стекла 0.3 м². В таблице приведены цены на стекло и на резку стекол. Сколько рублей будет стоить самый дешевый заказ?

па стекло и на резку стеком. Скомоко русмен судет степть самым дешевым заказ.			
Фирма	Цена стекла	Резка стекла	Дополнительные
	(руб за 1 м ² .)	(руб. за одно стек-	условия
		ло)	
A	310	16	
В	300	18	
С	320	12	При заказе на сумму
			больше 1500 руб.
			резка бесплатно

- 3. (1 балл) Высота конуса равен 5 см, а длина образующей 13 см. Найдите диаметр основания конуса.
- 4. (1 балл) Вычислите значение выражения $16^{3/4}$ $(1/9)^{-2} + 27^{2/3}$
- 5. Найдите значение $\sin x$, если $\cos x = 8/17$; $\Pi/2 < x < 0$
- 6. (1 балл) Решите уравнение $9^x = (1/27)^{2-x}$
- 7. (1 балл) Вычислите значение выражения $Log_7 36^{1/2} Log_7 14 Log_7 21$
- 8. (1 балл) Решите уравнение $Log_2(5x-1)=3$
- 9. (1 балл) Садовник посадил весной 820 семян цветов, из которых 76 не взойдут. Какова вероятность того, что цветочное семечко взойдет?

Используя график функции f(x) (см. рис. ниже), определите и запишите ответ:

- 10. (1 балл) Наименьшее и наибольшее значение функции.
- 11. (1 балл) Промежутки возрастания и убывания функции.
- 12. (1 балл) При каких значениях $f(x) \ge 0$

При выполнении заданий 13-18 запишите ход решения и полученный ответ.

- 13. (1 балл) Площадь поверхности куба равен 48 см³. Найдите его объем.
- 14. (1 балл) Тело движется по прямой так, что расстояние S до него от некоторой точки A этой прямой изменяется по закону $S(t) = 0.5t^2 3t + 4$ (м), где t-время движения в секундах. Найдите скорость тела после начала движения.
- 15. (1 балл) Найдите область определения функции $y=lg(x^2-8x)$
- 16. (1 балл) Решите уравнение $1/2\sqrt{x+1} = 4$
- 17. (1 балл) Решите уравнение $3 tg2x \sqrt{3} = 0$
- 18. (1 балл) В правильной четырехугольной усеченной пирамиде ребро нижнего основания 8 см, ребро верхнего 2 см и высота равна 4 см. Найдите площадь боковой поверхности усеченной пирамиды.

Дополнительная часть

При выполнении заданий 19-22 запишите ход решения и полученный ответ.

- 19. (3 балла) Найдите промежутки убывания функции у= $\mathbf{x}^3 + 3\mathbf{x}^2$ 9 \mathbf{x}
- 20. (3 балла) Равнобедренная трапеция с основаниями 15 см и 25 см и высотой 12 см вращается около большего основания. Найдите площадь поверхности тела вращения.
- 21. (3 балла) Решите систему уравнений $16^x = 64^y$

$$27^{x+1} = 81^{y-1}$$

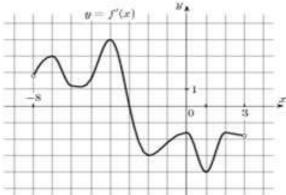
22. (3 балла) Найдите решение уравнения: $3^{2x} + 3 \cdot 3^x - 18 = 0$

Составил преподаватель Карташев И.А.

Экзаменационная работа по математике Вариант 3

Критерии оценки выполнения работы

Оценка	Число баллов, необходимых для полу-	
	чения оценки	
«3» удовлетворительно	8-14	
«4» хорошо	15-20	
	(не менее одного задания из дополни-	
	тельной части)	
«5» отлично	21-30	
	(не менее двух заданий из дополни-	
	тельной части)	


Обязательная часть

При выполнении заданий 1-8 запишите ход решения и полученный ответ

- 1. (1 балл) Флакон шампуня стоит 120 рублей. Какое наибольшее число флаконов можно купить на 900 рублей во время распродажи, когда скидка составляет 35%.
- 2. (1 балл) Для строительства гаража можно использовать один из двух видов фундамента: бетонный или из пеноблоков. Для фундамента из пеноблоков необходимо 4 кубометра пеноблоков и 4 мешка цемента. Для бетонного фундамента необходимо 5 тонн щебня и 30 мешков цемента. Кубометр пеноблоков стоит 2350 рублей, щебень стоит 660 рублей за тонну, а мешок цемента стоит 230 рублей. Сколько рублей будет стоить материал, если выбрать наиболее дешевый вариант?
- 3. (1 балл) В правильной четырехугольной пирамиде SABCD точка O центр основания, S –вершина, SC=25 см, BD=14 см. Найдите длину отрезка SO.
- 4. (1 балл) Вычислите значение выражения $25^{1.5} + (0.25)^{-0.5} 81^{0.75}$
- 5. Найдите значение sinx, если $\cos x = -3/5$; $\Pi/2 < x < 0$
- 6. (1 балл) Решите уравнение $49^{x+1} = (1/7)^x$
- 7. (1 балл) Вычислите значение выражения $Log_28 + Log_5125 + Lg100 + lg1$
- 8. (1 балл) Решите уравнение Log₃(12-4x)=2
- 9. (1 балл) Фабрика выпускает школьные портфели. В среднем на 340 качественных сумок приходится 12 сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной.

Используя график функции f(x) (см. рис. ниже), определите и запишите ответ:

- 10. (1 балл) Наименьшее и наибольшее значение функции.
- 11. (1 балл) Промежутки возрастания и убывания функции.
- 12. (1 балл) При каких значениях $f(x) \ge 0$

При выполнении заданий 13-18 запишите ход решения и полученный ответ.

- 13. (1 балл) Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем конуса равен 24 м³. Найдите объем шара.
- 14. (1 балл) Тело движется по прямой так, что расстояние S до него от некоторой точки A этой прямой изменяется по закону $S(t)=1+4t-t^2$ (м), где t-время движения в секундах. Через сколько секунд после начала движения тело остановиться?
- 15. (1 балл) Найдите область определения функции $y=lg(2x^2+9x)$
- 16. (1 балл) Решите уравнение $\sqrt{4x+14} = 7$
- 17. (1 балл) Решите уравнение $2\cos(x/2) + 1 = 0$
- 18. (1 балл) Дана прямая призма, основанием которой является равнобедренная трапеция с основаниями 12 см и 20 см и высотой 3 см. Найдите площадь боковой поверхности призмы, если ее боковое ребро 11 см.

Дополнительная часть

При выполнении заданий 19-22 запишите ход решения и полученный ответ.

- 19. (3 балла) Найдите промежутки убывания функции $y=-x^3+6x^2+15x+1$
- 20. (3 балла) Равнобедренная трапеция с основаниями 12см и 18 см и высотой 4 см вращается около меньшего основания. Найдите площадь поверхности тела вращения.
- 21. (3 балла) Решите систему уравнений

$$x+y=3$$
 $5^{x+3y}=1/5$

22. (3 балла) Найдите решение уравнения: $2 \cdot 3^{x+1}$ - $5 \cdot 9^{x-2} = 81$

Составил преподаватель Карташев И.А.

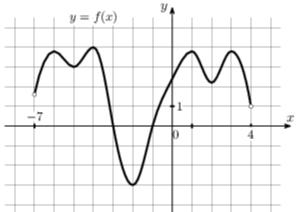
Экзаменационная работа по математике Вариант 4

Критерии оценки выполнения работы

Оценка	Число баллов, необходимых для полу-	
	чения оценки	
«3» удовлетворительно	8-14	
«4» хорошо	15-20	
	(не менее одного задания из дополни-	
	тельной части)	
«5» отлично	21-30	
	(не менее двух заданий из дополни-	
	тельной части	

Обязательная часть

При выполнении заданий 1-8 запишите ход решения и полученный ответ


- 1. (1 балл) Магазин закупает цветочные горшки по оптовой цене 135 рублей за штуку и продает с наценкой 15%. Какое наибольшее число таких горшков можно купить в этом магазине на 1850 рублей.
- 2. (1 балл) Для изготовления книжных полок требуется заказать 40 одинаковых стекол в одной из трех фирм. Площадь каждого стекла 0.25 м². В таблице приведены цены на стекло и на резку стекол. Сколько рублей будет стоить самый дешевый заказ?

Фирма	Цена стекла	Резка стекла	Дополнительные
	(руб за 1 м ² .)	(руб. за одно стек-	условия
		ло)	
A	320	14	
В	310	19	
С	380	10	При заказе на сумму
			больше 2000 руб.
			резка бесплатно

- 3. (1 балл) В правильной четырехугольной пирамиде SABCD точка О-центр основания, S –вершина, SO=8 см, BD=12 см. Найдите длину бокового ребра SA.
- 4. (1 балл) Вычислите значение выражения $14^{1/3} \cdot (0.5)^{1/3} \cdot 7^{2/3}$
- 5. Найдите значение $\cos x$, если $\sin x = -0.6$; $\Pi/2 < x < 0$
- 6. (1 балл) Решите уравнение $4^{1-2x} = 64$.
- 7. (1 балл) Вычислите значение выражения Log₄8+Log₄40-Log₄5
- 8. (1 балл) Решите уравнение $Log_{1/4}(12-4x)=-4$
- 9. (1 балл) В некоторой социальной сети у Пети есть 120 друзей, среди которых два его однофамильца. Какова вероятность того, что произвольно выбранный друг не является Петиным однофамильцем?

Используя график функции f(x) (см. рис. ниже), определите и запишите ответ:

- 10. (1 балл) Наименьшее и наибольшее значение функции.
- 11. (1 балл) Промежутки возрастания и убывания функции.
- 12. (1 балл) При каких значениях $f(x) \ge 0$

При выполнении заданий 13-18 запишите ход решения и полученный ответ.

- 13. (1 балл) Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем шара равен 80 м³. Найдите объем конуса.
- 14. (1 балл) Тело движется по прямой так, что расстояние S до него от некоторой точки A этой прямой изменяется по закону $S(t)=18t-3t^3$ (м), где t-время движения s секундах. Через сколько секунд после начала движения тело остановится?
- 15. (1 балл) Найдите область определения функции $y=lg(x^2-x)$
- 16. (1 балл) Решите уравнение $\sqrt{(40-9x)}=2$
- 17. (1 балл) Решите уравнение 2cos(x\4) -3=0
- 18. (1 балл) Дана прямая призма, основанием которой является равнобедренная трапеция с основаниями 9 см и 17 см и высотой 3 см. Найдите площадь боковой поверхности призмы, если ее боковое ребро равно 12 см.

Дополнительная часть

При выполнении заданий 19-22 запишите ход решения и полученный ответ.

- 19. (3 балла) Найдите промежутки убывания функции y=x³-12x+9
- 20. (3 балла) Прямоугольная трапеция с основаниями 11 см и 15 см и высотой 3 см вращается около меньшего основания. Найдите площадь поверхности тела вращения.
- 21. (3 балла) Решите систему уравнений

$$x+2y=-1$$

 $4^{x+y^2}=16$

22. (3 балла) Найдите решение уравнения: $6\sin^2 x + 5\sin x \cdot \cos x + \cos^2 x = 0$

"Отлично" - если студент глубоко и прочно усвоил весь программный материал в рамках указанных знаний и умений. Исчерпывающе, последовательно, грамотно и логически стройно его излагает, тесно увязывает с условиями современного производства, не затрудняется с ответом при видоизменении задания, свободно справляется с задачами и практическими заданиями, правильно обосновывает принятые решения, умеет самостоятельно обобщать и излагать материал, не допуская ошибок.

- "Хорошо" если твердо студент знает программный материал, грамотно и по существу излагает его, не допускает существенных неточностей в ответе на вопрос, может правильно применять теоретические положения и владеет необходимыми умениями и навыками при выполнении практических заданий.
- "Удовлетворительно" если студент усвоил только основной материал, но не знает отдельных деталей, допускает неточности, недостаточно правильные формулировки, нарушает последовательность в изложении программного материала и испытывает затруднения в выполнении практических заданий.

"Неудовлетворительно" - если студент не знает значительной части программного материала, допускает существенные ошибки, с большими затруднениями выполняет практические задания, задачи.

Информационное обеспечение обучения

Основные источники

- 1. Башмаков М.И. Математика (СПО): учебник. М.: КноРус, 2018. 256 с. ISBN 978-5-4468-2339-0.
- 2. Дадаян А.А. Математика: учебник. 3-е изд., испр. и доп. М.: ИНФРА-М, 2019. 544 с. ISBN 978-5-16-102338-9. Режим доступа: http://znanium.com/catalog/product/1006658.
- 3. Дадаян А.А. Сборник задач по математике: Учебное пособие / Дадаян А. А., 3-е изд. М.: Форум, ИНФРА-М Издательский Дом, 2018. 352 с. (Профессиональное образование) Режим доступа: http://znanium.com/catalog/product/970454.

Дополнительные источники

- 1. Бардушкин В.В. Математика. Элементы высшей математики: учебник: в 2 т. Т. 1 / В.В. Бардушкин, А.А. Прокофьев. М.: КУРС, НИЦ ИНФРА-М, 2017. 304 с. (Среднее профессиональное образование). Режим доступа: http://znanium.com/catalog/product/615108.
- 2. Бардушкин В.В. Математика. Элементы высшей математики: учебник: в 2 т. Т. 2 / В.В. Бардушкин, А.А. Прокофьев. М.: КУРС, НИЦ ИНФРА-М, 2018. 368 с. (Среднее профессиональное образование). ISBN978-5-16-104732-3. Режим доступа: http://znanium.com/catalog/product/974795.
- 3. Гусева, Е. Н. Математика и информатика. Практикум: Учеб. пособ. / Е. Н. Гусева и др. 3-е изд., стереотип. М.: Флинта, 2011. 406 с. ISBN 978-5-9765-1193-4. Режим доступа: http://znanium.com/catalog/product/406044.

Интернет ресурсы

- 1. Электронный учебник «Математика в школе, XXI век». Режим доступа: http://school-collection.edu.ru.
- 2. Информационные, тренировочные и контрольные материалы. Режим доступа: http://fcior.edu.ru.
- 3. Единая коллекции Цифровых образовательных ресурсов. Режим доступа: www.school-collection.edu.ru.